Gresham Village School and Nursery
Written Calculations Policy

Year 1	In year 1，we use a range of concrete and pictorial representations following White Rose Mathematics models in their scheme of work and their Calculation Policy．This learning builds the concepts and mathematical understanding for year 2.						
Year 2	Add numbers using concrete objects， pictorial representations，and mentally， including： $\begin{aligned} & U+U+U \\ & T U+U \\ & T U+T \\ & T U+T U \end{aligned}$ Use a range of concrete and pictorial representations following White Rose Mathematics models．Use of Base 10 to solve TU＋TU calculations： There is no requirement to teach column method addition in year 2 ．	$\begin{array}{\|c\|} \hline 36+ \\ \hline 36 \\ \hline 37 \end{array}$		6 \square 7 ロロロ 13		Leading to abstract representations： $30+30=60,6+7=13, \text { so } 60+13=73$ Or，counting on from the larger number in tens and ones： $37+30=67,67+6=73$	
Year 3	Add numbers with up to 3 digits using an effective written method Required skills and knowledge： Children need to be confident adding units，multiples of 10 and multiples of 100 eg $3+4,30+40,100+400$ ． They need to understand place value to HTU． Initially use base 10 to support with addition of TU and TU，HTU and TU，then HTU＋HTU：	\qquad \square $=623$			6 \square 7 ㅁㅁㅁ 13	Then move on to expanded column addition： $\begin{aligned} & 236+387 \\ & 200+30+6 \\ & \frac{300+80+7}{500+110+13}=623 \end{aligned}$	Moving to： $\begin{aligned} & 236 \\ & +\frac{387}{13}(6+7) \\ & 110(30+80) \\ & 500(200+300) \\ & \hline 623 \end{aligned}$

Gresham Village School and Nursery

Written Calculations Policy

Year 4	Add numbers with up to 4 digits, including using the formal written method Children need to understand the value of digits up to THTU. Do not move to the compact method until children are absolutely secure with the expanded version.	Expanded vertical addition: $\begin{array}{r} 3236 \\ + \\ \frac{2387}{13}(6+7) \\ 110(30+80) \\ 500(200+300) \\ 5000(3000+2000) \\ \hline 5623 \end{array}$		Leading to the compact vertical addition method: $\begin{array}{r} 3236 \\ +\quad \frac{2387}{5623} \\ \hline \frac{11}{11} \end{array}$
Year 5	Add numbers with more than 4 digits, includ $\begin{array}{r} 23236 \\ +\frac{32387}{55623} \end{array}$	ding using the formal written method	Add decim $\begin{array}{r} 23.57 \\ +\frac{17.48}{41.05} \\ \hline \frac{41}{111} \end{array}$	als with the same number of decimal places, using a compact written method
Year 6	Add decimals with a different number of decimal places using a compact written method Compact method as above.			

Gresham Village School and Nursery

Written Calculations Policy
Subtraction

Gresham Village School and Nursery

Written Calculations Policy

Year 3	Subtract numbers with up to 3 digits using an effective written method Required skills and knowledge： Children need to be confident subtracting units，multiples of 10 and 100 eg $6-2,70$ $-20,700-200$ ． They need to be able to partition HTU．	Initially use base 10 on a HTU m and TU，HTU and TU，then HTU 367-138 Subtract 8 from the ones．Ther into the ones column to make Exchange the ten for ten ones， steps）30，then 100 ． $367-138=229$	to support with subtraction of TU HTU． 7 are not enough ones，so move a 10 en subtract 8 ，then（in separate \square 매ำロロロロ	Then teach the abstract version alongside this： $367-138$ using expanded vertical subtraction（decomposition）．$\begin{gathered} 50 \quad 17 \\ 300+60+7 \\ -\frac{100+30+8}{200+20+9}=229 \end{gathered}$full decomposition： Leading to： 517 3367 $-\underline{1138}$ $\underline{2229}$	
Year 4	Subtract numbers with up to 4 digits using the formal written method Ensure children are confident with expanded decomposition without any apparatus（year 3），before moving on to full decomposition．It is not usually necessary to go back to expanded version， when moving on to THTU－THTU． A common difficulty is subtracting when there is a zero in the larger number．	Expanded decomposition mod 3367－1138 $\begin{gathered} 50 \quad 17 \\ -\frac{1000+100+30+8}{2000+200+20+9}=2229 \end{gathered}$	Leading $\begin{array}{r} 517 \\ 367 \\ -\quad-138 \\ \hline \underline{229} \\ \hline \end{array}$		

Gresham Village School and Nursery

Written Calculations Policy

Year 5	Subtract numbers with more than 4 digits, including using the formal written method Ensure children are secure with compact decomposition (year 4). $\begin{array}{r} 517 \\ 33367 \\ -\underline{-21138} \\ \hline \mathbf{1 2 2 2 9} \\ \hline \end{array}$	Subtract decimals with the same number of decimal places, using a compact written method Ensure that children are completely secure with compact decomposition before introducing decimals. $\begin{array}{r} 113417 \\ 23.57 \\ -\underline{17.48} \\ \hline \mathbf{6 . 0 9} \\ \hline \end{array}$
Year 6	Subtract decimals with a different number of decimal places using a compact written Compact method as above.	

Gresham Village School and Nursery

Written Calculations Policy
Multiplication

Years 1 and 2	We follow the White Rose Mathematics Calculations Policy in Key Stage 1, which sets out clearly the progression in understanding early multiplication concepts and mental calculations, including times tables in year 2. It is on these early concepts that the following written methods are based.	
Year 3	Develop reliable written methods for multiplication..., starting with ... 2 digit numbers by 1 digit numbers and progressing to the formal written method Teach proficiency in multiplying 34×4 Continue with methods and concrete and pictorial and mental with jottings and apparatus, as explained in the White Rose Mathematics scheme of work. $30 \times 4=120$ $4 \times 4=16$ Children need to be becoming proficient in times tables. In setting calculations for the children to do, use tables that they know well.	partitioning: Leading to expanded vertical multiplication: $\frac{\mathrm{X} \mathrm{\quad 4}}{16}(4 \times 4)$ $\frac{120}{136}(4 \times 30)$
Year 4	Multiply 2 and $\mathbf{3}$ digit numbers by a one digit number using formal written layout Teach expanded vertical multiplic 267 Children need to know tables facts and be able to apply these to multiples of 10 and 100 eg $6 \times 60,6 \times 600$.	on Leading to compact short multiplication: $\begin{array}{r} 267 \\ \times \quad 6 \\ \hline 1602 \\ \hline 44 \end{array}$
Year 5	Multiply numbers up to 4 digits by a 1 or 2-digit number using the formal written method Compact short multiplication $\begin{array}{r} 3267 \\ \times \quad 6 \\ \hline 19602 \\ \hline 144 \end{array}$	Multiply whole numbers by a decimal number to 1 decimal place For example, 32.5×7 or 3.56×6 $\begin{array}{r} 32.5 \\ \times \quad 6 \\ \hline \frac{192.0}{113} \end{array}$ Explain how to read the decimal within the calculation eg $0.5 \times 6=3.0$, so put the 0 in the tenths column and carry 3.

Gresham Village School and Nursery

Written Calculations Policy

Year 6	Multiply numbers up to $\mathbf{4}$ digits by a 2 digit number This is an extension of the compact HTU x U method above, but differs in that two multiplications are performed, then added up at the end. Showing the expanded version across is a good starting point, but may not be needed if the children are proficient in the Y 5 method. It is important that the children know they need to add a place holder to the second line, because they are multiplying by a multiple of 10 .	3267×26 Partition into 3267×20 and 3267×6 $\begin{array}{r} 3267 \\ \times \quad 20 \\ \hline \frac{65340}{11} \end{array} \begin{array}{r} 3267 \\ \hline \frac{19602}{144} \end{array}$ Then combine: $\begin{array}{r} 65340 \\ +19602 \\ \hline \frac{84942}{1} \end{array}$	Moving on to the standard compact method:

Gresham Village School and Nursery

Written Calculations Policy
Division

Gresham Village School and Nursery

Written Calculations Policy

Year 4	Become fluent in the formal written method of short division with exact answers when dividing by a 1- digit number Continue using place value counters to support division to $\mathrm{HTU} \div \mathrm{U}$ as necessary. Proficiency in times tables is essential for all division. Provide tables squares and charts as appropriate.	Start by partitioning as in year 3: $6 \longdiv { 9 0 + 6 } \quad 6 \quad \begin{array} { l } { 1 0 + 6 = 1 6 } \\ { 9 0 + 3 6 } \end{array}$	Then introduce the compact method of short division and extend up to 3 digits. $\begin{array}{r} 16 \\ 6 \longdiv { 9 _ { 3 } 6 } \end{array}$	Express quotients as remainders: $\begin{array}{r} 161 \mathrm{r} 1 \\ 6{ }_{9}{ }^{967} \end{array}$
Year 5	Divide numbers up to 4 digits by a 1 -digit number using short division and interpret remainders appropriately for the context	$\begin{array}{r} 161 \mathrm{r} 1 \\ 6 \\ 6 \\ 9_{3} 67 \end{array}$ Or- $6 \frac{161^{1 / 2} 6}{9_{3} 67}$	Extending to: ${ }_{6}{\stackrel{159.5}{9_{3} 557.30}}^{2}$ But ensure that the c places.	culation works up to 2 decimal
Year 6	Divide numbers up to 4 digits by a 2-digit whole number using long division and interpret remainders as whole number remainders, fractions or by rounding, as appropriate for the context	$\begin{aligned} & 14 \begin{array}{l} 162 \\ \frac{2268}{} \\ \frac{14}{86}(1 \times 14) \\ \frac{84}{28}(6 \times 14) \\ \\ \\ \\ \\ 28 \\ 0 \end{array}(2 \times 14) \end{aligned}$		

